

Connet Fiber Optics

上海瀚宇光纤通信技术有限公司

980/1064nm 保偏光波分复用器

---PM-WDM-980/1064nm

应用领域:		
• PM YDFA		
• 环形腔掺镱光纤激光器		

产品特点:
• 低插入损耗
• 环境稳定性高
• 高波长隔离度
• 高偏振消光比
• 高回波损耗

保偏光波分复用器

上海瀚宇 980/1064nm PM-WDM 是一种微光学器件,具有尺寸小巧,低损耗,长期稳定的性能。保偏光纤采用 Panda 型 PM980 特种光纤。各种连接器可以选择。该器件可以被应用于中低功率的保偏掺镱光纤放大器,环形 腔设计的保偏光纤激光器等。

技术指标:

参数	单位	Value
型号		PM-WDM 980/1064nm
透射端口(Input 1 to Output)		1 端口3 端口
透射波长范围	nm	980±10
透射波长范围内插入损耗	dB	≤1.2
插入损耗波动	dB	≤0.3
反射端口(Input 2 to Output)		2 端口3 端口
反射波长范围	nm	1064±10
反射波长范围内插入损耗	dB	≤1.0
插入损耗波动	dB	≤0.3
偏振消光比	dB	≥22
信号光阻拦能力(1064nm,端口 2 到端口 1)	dB	≥55
回波损耗	dB	≥50
工作温度	°C	-5 ~ + 70

Connet Fiber Optics

上海瀚宇光纤通信技术有限公司

运输/存储温度	°C	-40 ~ +85
光纤类型		PM980 Panda 250um 裸光纤
偏振对轴方式		慢轴对准,快轴不通光
输入输出长度	m	0.75
封装尺寸 (裸光纤)		φ5.5 x 55(Length)
功率承受能力	mW	300(典型值)

说明:

- 1. 所有测试指标基于无连接器的测试指标。
- 2. FC/PC 和 FC/APC 型连接器可以提供,加连接器会导致插入损耗增加,偏振消光比下降(约 2dB)。
- 3. 无特殊要求情况下,PM-WDM 采用慢轴对准,快轴不通光的方式制作。

订货信息

PM-WDM-980/1064-1x2- J-P-L-X/Y

- J: 输入输出尾纤类型 0=250um 裸光纤; 1=900um 松套;
- L: 输入输出尾纤长度单位米; 0=0.75m

X/Y: 连接器类型 0=无连接器; FU=FC/UPC; FA=FC/APC;